177 research outputs found

    Fast Visuomotor Processing of Redundant Targets: The Role of the Right Temporo-Parietal Junction

    Get PDF
    Parallel processing of multiple sensory stimuli is critical for efficient, successful interaction with the environment. An experimental approach to studying parallel processing in sensorimotor integration is to examine reaction times to multiple copies of the same stimulus. Reaction times to bilateral copies of light flashes are faster than to single, unilateral light flashes. These faster responses may be due to ‘statistical facilitation’ between independent processing streams engaged by the two copies of the light flash. On some trials, however, reaction times are faster than predicted by statistical facilitation. This indicates that a neural ‘coactivation’ of the two processing streams must have occurred. Here we use fMRI to investigate the neural locus of this coactivation. Subjects responded manually to the detection of unilateral light flashes presented to the left or right visual hemifield, and to the detection of bilateral light flashes. We compared the bilateral trials where subjects' reaction times exceeded the limit predicted by statistical facilitation to bilateral trials that did not exceed the limit. Activity in the right temporo-parietal junction was higher in those bilateral trials that showed coactivation than in those that did not. These results suggest the neural coactivation observed in visuomotor integration occurs at a cognitive rather than sensory or motor stage of processing

    Age-related changes in global motion coherence: conflicting haemodynamic and perceptual responses

    Get PDF
    Our aim was to use both behavioural and neuroimaging data to identify indicators of perceptual decline in motion processing. We employed a global motion coherence task and functional Near Infrared Spectroscopy (fNIRS). Healthy adults (n = 72, 18-85) were recruited into the following groups: young (n = 28, mean age = 28), middle-aged (n = 22, mean age = 50), and older adults (n = 23, mean age = 70). Participants were assessed on their motion coherence thresholds at 3 different speeds using a psychophysical design. As expected, we report age group differences in motion processing as demonstrated by higher motion coherence thresholds in older adults. Crucially, we add correlational data showing that global motion perception declines linearly as a function of age. The associated fNIRS recordings provide a clear physiological correlate of global motion perception. The crux of this study lies in the robust linear correlation between age and haemodynamic response for both measures of oxygenation. We hypothesise that there is an increase in neural recruitment, necessitating an increase in metabolic need and blood flow, which presents as a higher oxygenated haemoglobin response. We report age-related changes in motion perception with poorer behavioural performance (high motion coherence thresholds) associated with an increased haemodynamic response

    The developmental trajectory of attentional orienting to socio-biological cues.

    Get PDF
    It has been proposed that the orienting of attention in the same direction as another’s point of gaze relies on innate brain mechanisms which are present from birth, but direct evidence relating to the influence of eye gaze cues on attentional orienting in young children is limited. In two experiments, 137 children aged 3–10 years old performed an adapted pro-saccade task with centrally presented uninformative eye gaze, finger pointing and arrow pre-cues which were either congruent or incongruent with the direction of target presentations. When the central cue overlapped with presentation of the peripheral target (Experiment 1), children up to 5 years old had difficulty disengaging fixation from central fixation in order to saccade to the target. This effect was found to be particularly marked for eye gaze cues. When central cues were extinguished simultaneously with peripheral target onset (Experiment 2), this effect was greatly reduced. In both experiments finger pointing cues (image of pointing index finger presented at fixation) exerted a strong influence on saccade reaction time to the peripheral stimulus for the youngest group of children (<5 years). Overall the results suggest that although young children are strongly engaged by centrally presented eye gaze cues, the directional influence of such cues on overt attentional orienting is only present in older children, meaning that the effect is unlikely to be dependent upon an innate brain module. Instead, the results are consistent with the existence of stimulus–response associations which develop with age and environmental experience

    A case study of new assessment and training of unilateral spatial neglect in stroke patients: effect of visual image transformation and visual stimulation by using a head mounted display system (HMD)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Unilateral spatial neglect (USN) is most damaging to an older stroke patient who also has a lower performance in their activities of daily living or those elderly who are still working. The purpose of this study was to understand more accurately pathology of USN using a new HMD system.</p> <p>Methods</p> <p>Two stroke patients (Subject A and B) participated in this study after gaining their informed consent and they all had Left USN as determined by clinical tests. Assessments of USN were performed by using the common clinical test (the line cancellation test) and six special tests by using HMD system in the object-centered coordinates (OC) condition and the egocentric coordinates (EC) condition. OC condition focused the test sheet only by a CCD. EC condition was that CCD can always follow the subject's movement. Moreover, the study focused on the effect of the reduced image condition of real image and the arrows.</p> <p>Results</p> <p>In Patient A who performed the common test and special tests of OC and EC conditions, the results showed that for the line cancellation test under the common condition, both of the percentage of the correct answers at the right and left sides in the test sheet was 100 percent. However, in the OC condition, the percentage of the correct answers at the left side in the test sheet was 44 percent and the right side was 94 percent. In the EC condition, the left side was 61 percent and the right side was 67 percent. In Patient B, according to the result of the use of reduced image condition and the arrows condition by HMD system, these line cancellation scores more increased than the score of the common test.</p> <p>Conclusions</p> <p>The results showed that the assessment of USN using an HMD system may clarify the left neglect area which cannot be easily observed in the clinical evaluation for USN. HMD may be able to produce an artificially versatile environment as compared to the common clinical evaluation and treatment.</p

    Evidence for a dissociation between the control of oculomotor capture and disengagement

    Get PDF
    The current study investigated whether capture of the eyes by a salient onset distractor and the disengagement of the eyes from that distractor are driven by the same or by different underlying control modes. A variant of the classic oculomotor capture task was used. Observers had to make a saccade to the only gray circle among red background circles. On some trials, a green (novel color), red (placeholder color) or gray (target color) distractor square was presented with sudden onset. Results showed that when participants reacted fast, oculomotor capture was primarily driven by bottom-up pop-out: both types of distractors (green and gray) that popped out among the red background elements showed more capture than a red distractor that did not pop-out. In contrast to initial capture, disengagement of the eyes from the distractor was driven by top-down target–distractor similarity effects. We also examined the time-course of this effect. The distractor could change from green to either the target or placeholder color. When the color change was early in time (30–40 ms after its onset), dwell times were strongly affected by the change, whereas the effect on oculomotor capture was weak. Importantly, a change occurring as early as 60–80 ms after distractor onset did neither affect capture nor dwell times, corroborating the assumption of parallel programming of saccades

    Use of Motor Abundance in Young and Older Adults during Dual-Task Treadmill Walking

    Get PDF
    Contains fulltext : 110120.pdf (publisher's version ) (Open Access)Motor abundance allows individuals to perform any task reliably while being variable in movement's particulars. The study investigated age-related differences in this feature when young adults (YA) and older adults (OA) performed challenging tasks, namely treadmill walking alone and while performing a cognitive task. A goal function for treadmill walking was first defined, i.e., maintain constant speed at each step, which led to a goal equivalent manifold (GEM) containing all combinations of step time and step length that equally satisfied the function. Given the GEM, amounts of goal-equivalent and non-goal-equivalent variability were afterwards determined and used to define an index providing information about the set of effective motor solutions relative to the GEM. The set was limited in OA compared to YA in treadmill walking alone, indicating that OA made less flexible use of motor abundance than YA. However, this differentiation between YA and OA disappeared when concurrently performing the cognitive task. It is proposed that OA might have benefited from cognitive compensation
    • …
    corecore